使用GStreamer工具包实现rtsp结合opencv推流

安装库

sudo apt install libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev
sudo apt-get install libgstrtspserver-1.0-0 gstreamer1.0-rtsp
sudo apt-get install libgirepository1.0-dev
sudo apt-get install gobject-introspection gir1.2-gst-rtsp-server-1.0

代码

不多说什么直接上代码,想了解Gstreamer的小伙伴可以自行了解一下

#FileName: main.py
#Author: lijie
#Date: 2025/09/18
#Notes

import cv2
import gi
import sys
import json
import time
import signal
import numpy as np

gi.require_version(‘Gst’, ‘1.0’)
gi.require_version(‘GstRtspServer’, ‘1.0’)
from gi.repository import Gst, GstRtspServer, GObject

#cv2.namedWindow(‘video_realtime_face’, cv2.WINDOW_NORMAL)

def to_node(type, message):
# convert to json and print (node helper will read from stdout)
try:
print(json.dumps({type: message}))
except Exception:
pass
# stdout has to be flushed manually to prevent delays in the node helper communication
sys.stdout.flush()

to_node(“status”, “Facerecognition started…”)

def shutdown(self, signum):
to_node(“status”, ‘Shutdown: Cleaning up camera…’)
quit()

signal.signal(signal.SIGINT, shutdown)

class SensorFactory(GstRtspServer.RTSPMediaFactory):
def init(self, **properties):
super(SensorFactory, self).init(**properties)
self.cap = cv2.VideoCapture(“rtsp://admin:admin123@192.168.2.190:554/sub”)
# self.cap = cv2.VideoCapture(“shmsrc socket-path=/tmp/foo2 ! video/x-raw, format=BGR ,width=1920,height=1080,framerate=30/1 ! videoconvert ! video/x-raw, format=BGR ! appsink”)
#self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1920)
#self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080)
self.number_frames = 0
self.fps = 30.0
self.duration = 1 / self.fps * Gst.SECOND # duration of a frame in nanoseconds
self.launch_string = 'appsrc name=source is-live=true block=true format=GST_FORMAT_TIME ’
'caps=video/x-raw,format=BGR,width=1920,height=1080,framerate=30/1 ’
'! videoconvert ! video/x-raw,format=I420 ’
'! x264enc speed-preset=ultrafast tune=zerolatency threads=4 ’
‘! rtph264pay config-interval=1 name=pay0 pt=96’

def on_need_data(self, src, lenght):
    if self.cap.isOpened():
        ret, frame = self.cap.read()
        if ret:
            #cv2.imshow("video_realtime_face", frame)
            #if cv2.waitKey(1) & 0xFF == ord('q'):
            #    return
            data = frame.tostring()
            buf = Gst.Buffer.new_allocate(None, len(data), None)
            buf.fill(0, data)
            buf.duration = self.duration
            timestamp = self.number_frames * self.duration
            buf.pts = buf.dts = int(timestamp)
            buf.offset = timestamp
            self.number_frames += 1
            retval = src.emit('push-buffer', buf)
            print('pushed buffer, frame {}, duration {} ns, durations {} s'.format(self.number_frames,
                                                                                   self.duration,
                                                                                   self.duration / Gst.SECOND))
            if retval != Gst.FlowReturn.OK:
                print(retval)

def do_create_element(self, url):
    return Gst.parse_launch(self.launch_string)

def do_configure(self, rtsp_media):
    self.number_frames = 0
    appsrc = rtsp_media.get_element().get_child_by_name('source')
    appsrc.connect('need-data', self.on_need_data)

class GstServer(GstRtspServer.RTSPServer):
def init(self, **properties):
super(GstServer, self).init(**properties)
self.factory = SensorFactory()
self.factory.set_shared(True)
self.get_mount_points().add_factory(“/test”, self.factory)
self.attach(None)

def run():
GObject.threads_init()
Gst.init(None)

server = GstServer()
rtsp_port_num = 8554
print("\n *** DeepStream: Launched RTSP Streaming at rtsp://localhost:%d/test ***\n\n" % rtsp_port_num)
loop = GObject.MainLoop()
loop.run()

if name == “main”:
run()

此时我们可以通过打开推流地址rtsp://localhost:8554/test查看摄像头内容, 假如我的推流计算机IP为:192.168.1.100 ,则需要打开的查看地址为:rtsp://192.168.1.100:8554/test,可以通过VLC串流查看。